

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2014

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS		MAXIMUM MARKS: 100			
NOTE:(i)	Attem	FIVE questions in all by selecting THREE questions from SECTION-A and TWO			
	questio	ons from SECTION-B. ALL questions carry EQUAL marks.			
(ii)	Ĉandio	late must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper.			
(iii)	No Pa	ge/Space be left blank between the answers. All the blank pages of Answer Book must			
<i>(</i> •)	be crossed.				
(iv)	Extra attempt of any question or any part of the attempted question will not be considered.				
(V)	Use of	Calculator is allowed.			
0 11 4		SECTION-A			
Q. No. 1.	(a) l	If G is a group in which $(a \cdot b)^i = d^i \cdot b^j$ for three consecutive integers <i>i</i> for all (10)			
		$a, b \in G$, show that G is abelian. (10)			
	(b) '	The center Z of a group G is defined by $Z = \{z \in G \mid zx = xz \text{ all } x \in G\}$. Prove (10)			
	1	that Z is a subgroup of G .			
Q. No. 2.	(a) l	f $f: G \to G'$ be a homomorphism. Prove that Ker f is a normal subgroup of (10)			
		G. (10)			
	(b)	Prove that any group of order 15 is cyclic.			
Q. No. 3.	(a) l	If in a ring R with unity, $(xy)^2 = x^2 y^2$ for all $x, y \in R$, then show that R is (10) commutative.			
	(b) I	Prove that the set $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$ forms a commutative ring with unit (10) element under addition and multiplication module 7.			
Q. No. 4.	(a) l	Prove that a non empty subset W of a vector space $V(F)$ is a subspace of V if (10)			
	6	and only if $\Gamma x + S y \in W$ for $\Gamma, S \in F, x, y \in W$.			
	(b) S	Show that the vectors (10)			
		$v_1 = (1, -1, -4, 0), v_2 = (1, 1, 2, 4), v_3 = (2, -1, -5, 2), v_4 = (2, 1, 1, 6)$ are linearly (10)			
	C	lependent in $\mathbb{R}^4(\mathbb{R})$.			
0 N. 5		(10)			
Q. No. 5.	(a)	A company produces three products, each of which must be processed (10)			
		equired per unit of each product in each department. In addition, the			
		weekly capacities are stated for each department in terms of work-hours			
	ä	available. What is desired is to determine whether there are any			
	(combinations of the three products which would exhaust the weekly			
	(capacities of the three departments.			
		$\frac{\text{Product}}{1 - 2 - 3} \text{Hours Available}$			
		Department 1 2 5 Hours Available			

		TTOuuci	L	
Department	1	2	3	Hours Available
				per Week
А	2	3.5	3	1,200
В	3	2.5	2	1,150
С	4	3	2	1,400

PURE MATHEMATICS, PAPER-I

(b) Show that
$$\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ca - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2$$
 (10)

SECTION-B

Q. No. 6.	(a)	Find the equation of the straight line joining two points on the ellipse	(10)
		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose eccentric angles are given. Hence find equations of the	
		tangent and normal at any point " on the ellipse.	
	(b)	Find the angle of intersection of the cardioids $r=a(1+\cos_n)$ and $r=b(1-\cos_n)$.	(10)
Q. No. 7.	(a)	Find the equation of the line L through the point $(5, \frac{7}{2}, 5)$ and intersecting at	(10)
		right angles the line M with parametric equations	
		x = 4 + 3t, y = 1 + t, z = -3t.	(10)
	(b)	Find the equation of the tangent plane at any point $P(x_1, y_1, z_1)$ of the elliptic	
		paraboloid $z = x^2 + 4y^2$.	
Q. No. 8.	(a)	Find the volume of the solid obtained by revolving the area enclosed by one arc	(10)
		of the cycloid $x = a(_{y} + \sin_{y})$, $y = a(1 + \cos_{y})$ about $x - axis$.	
	(b)	Discuss the surface and make a sketch, $x^2 - y^2 + z^2 = 1$.	(10)
